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The exploration of outer space and celestial bodies is frequently referred to as a pin-

nacle of human goals and achievements. From the search for native life forms beyond 

Earth1, studying the composition of planets2, asteroids3, and comets4, to discussing 

human settlements on the Moon or Mars5, and even discussing long term goals re-

ferred to in Kardashev scale6, it is seen as a set of achievements for human civilization 

and post-terrestrial societies7. However, the majority of the exploration and utilization 

endeavors are being carried out by machines. Satellites, probes, robotic landers, rov-

ers, and servicers have been delegated to carry out the bulk of the work. Contrary to 

many early futuristic visions, earth observation, telecommunication, and on-site in-

vestigation are not performed by astronauts or humans8. Projects focused on testing 

in situ space resource utilization (ISRU)9 and in-space manufacturing (ISM)10 are ro-

bot-based. The first ship to leave the solar system11 is not a sleeper ship12 carrying ex-

plorer teams in suspended animation or an enormous generation ship13, fitted with 

an ecosystem fit to sustain the primary crew and their future settler progeny14. The 

task of being the envoys of mankind has been technically passed down to ever more 

complex and advanced human artifacts15. Thus we are closer to the concept of send-

ing out Bracewell probes16 by another name17, which would establish remote outposts, 

industrial bases, and supply depots on other planets18 than sending astronaut-work-

ers for the same purpose19. This state of the matter can be explained by the general 

instability of long-term crewed9 space exploration, due to political factors and the 

risk factors related to human presence in outer space. Another factor contributing to 

robotization is the advancement in electronics, and materials engineering, such as 

miniaturization20, telecommunication, power and thermal management, machine 

autonomy, and structural design.  Designing a robotic space explorer or worker re-

quires less mass consideration, and there are no requirements regarding designing 

its inner space with humans in mind21. One needs only to recall The Golden Age and 

New Wave science fiction stories, where crews of space freighters22 carrying cargo be-

tween constantly moving ports and stations in the solar system were basically moving  

1. INTRODUCTION
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homes, where in some scenarios whole families were employed and spent most of 

their lives23. Not to mention communities of asteroid miners making their lives on 

remote minor bodies in the solar system24.

Why it may seem that robotic space explorers and workers are ruining the roman-

ticism or the excitement of space endeavors25, they aren’t free from failure, risk, or 

posing legal as well as policy questions. This is why human-robotic cooperation26 and 

human-oriented systems are still at the center27 of the lunar and Martian program. 

Humans working with remote teleoperators28 and utilizing AI for the purpose of hab 

system management29 and human safety show30 us that there is still a need for a 

human in the loop. This is with a visible shift in position and tasks towards robots and 

automated systems31.

While we might be familiar with the idea of space technologies spilling over into 

different fields of science and engineering32 or becoming the base for consumer 

commodities on Earth33, terrestrial developments impact space exploration as well. 

Similarly with developments in synthetic biology34, which can be seen in projects 

relating to extraterrestrial biomining35 and  ISBM36, the advent of machine learning 

technologies, commonly referred to as Artificial Intelligence is increasingly influen-

cing robotic space projects37, in fields of robot autonomy38, data processing in spa-

ce39, software-defined satellites40, and even programmable matter41. This however 

creates further challenges to the already heavily strained framework of international 

space law. The main framework of international space law has not been updated 

since 197542, with the Moon Agreement of 1979 failing to achieve broad ratification 

due to the provisions regarding space resources43. The main reason for its limited 

adoption was the rejection of its ratification by the US Senate in 198044, following the 

lobbying of a number of space-oriented NGOs45, mainly the L5 Society46 and the Na-

tional Space Institute47. While there have been calls to amend the Agreement48, the 

US President’s Executive Order 13914 on “Encouraging International Support for the 

Recovery and Use of Space Resources.”49  further reinforced the position of the Uni-

ted States on the topic50. However, developments in the form of intergovernmental 

project-specific contractual laws51 and implementation of soft laws and recommen-

dations implemented within national space laws can allow for particular legal clarity 

on certain issues52. Nevertheless, these cannot be viewed as replacements for the in-

ternational treaty system, with which they ought to comply, though they sometimes 

seem to supplement53. 

The main legal challenges with regard to large-scale implementation of space ro-

bots in outer space are as follows. The first issue is authorization and supervision over 

multirobotic operations54. The second is the issue of jurisdiction and control over mi-

ning, manufacturing, and servicing operations, as well as over robots manufactured 

in situ. The third is the liability and responsibility for robots and their activity. Those 

are followed by conclusions to the presented work.
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2. SPACE OBJECTS UNDER SPACE LAW.

Space objects can be viewed as the astrolegal and astropolitical appendages of spa-

cefaring states, with which they carry out space activities55. A space object comes 

into being however not by the means of launching it into outer space56 or landing on 

the surface of a celestial body, but rather by its entry into the state’s registry of space 

objects. Furthermore, international space law seems to be facing a conundrum of a 

lack of proper definition of space objects57. This is additionally impacted by national 

space regulations and practices in regard to space object registration. Some space-

faring nations differentiate between a number of potential space objects, such as 

space stations, space vehicles, or satellites58, while others regard only specific devices 

as space objects, leaving small sats out of the category and denying them entry into 

their national registry59.

Taking into account the provisions of the Outer Space Treaty of 1967 (OST)60, space 

objects are considered to be artificial, mobile quasi-territorial jurisdictions of their 

states of registry. The mobility of space objects relates not only to the propulsive sys-

tems they are fitted with, as in the case of satellites and launch vehicles, including 

Last Mile Delivery (LMD)1 and Orbit Transfer Vehicles (OTV)62 but to the basic provi-

sions of Article II of the OST. The non-appropriation principle of the OST permeates 

the understanding of surface and subsurface space stations and installations as arti-

ficial structures not fixed to the ground and therefore not constituting the means or 

the basis for creating land rights or real estate63. Thus they are treated as movable or 

removable from their present position. Their presence doesn’t imply any extension 

of national jurisdiction or basis for claims of sovereignty towards their surrounding 

area. Similarly, an accidental or purposeful impact site does not create landed rights 

towards the debris area, though the ownership of the debris remains unchanged by 

the event. This stems from Article VIII of the OST, which also underlines the quasi-ter-

ritorial status of space objects carried on the national registry64. 

The act of entering a space object into the national and UN registry implies the au-

thorization of space activity the object is destined to carry out, however, it needs to 

be recalled that the authorization may fall into the imperium of different bodies of 

national administration65. Therefore the act of authorization of a space activity should 

be a prerequisite for registration of a space object, though the authorization might 

cover several space objects and operations throughout a planned mission. Further-

more, The entry of a space object into the national registry may come due to the 

change of ownership of the object already present in outer space66, or due to the 

succession of states67.

This in turn takes us back to the issue of the space objects as moving boxes of natio-

nal space activity68. These boxes not only contain within them the national jurisdic-

tion of the state of registry, and the concept of the application of the complete set of 

national regulations in their interiors – their structure is permeated by the national 

jurisdiction in particular fields of law69. For example, in the case of patent law – the 

solar sail might be an integral component of the registered space object, as well as 
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a technology piece protected by patent in the jurisdiction of the state of registry (as 

well as other jurisdictions where the patent has been granted)70. Therefore the solar 

sail becomes both the embodiment of a protected invention as well as the area of 

patent protection in the quasi-territorial jurisdiction of the registered space object.  

This involves the operation of its mechanisms, the composition of the object as well 

as, if applicable, the processes and operations that the object undergoes or is used to 

achieve as a whole. The space object is the means of national space activities, there-

fore the laws don’t only govern its interior, its structure but also the use of its external 

components and instruments in their interactions with outer space, the surface of 

celestial bodies, and if required, other space objects (national or foreign). It is the 

scope of authorization that metaphorically drives the actions of a robotic rover, the 

operations of a satellite, and a servicing vehicle71. 

There is also a need to address the fact that space exploration, along with space re-

source and manufacturing activities will include (as means, tools or products) unco-

nventional space objects. Many of them would be either modular and reconfigurable 

robots, while others could take the form of smart dust72, utility fog73, or robotic mat-

ter74. Programmable matter and reconfigurable robots75 are different from softwa-

re-defined robots and satellites, however pose some challenges to the space object 

registry. Chief among the problems is that activities involving them in the manufac-

turing ecosystem would include the idea that the modules that formed the original 

space object might have changed their function or become elements of a new space 

object. Thus there will be a nuance involved in keeping track of these objects. On 

the other side of the issue, we have very small space objects that could proliferate 

with dust blasts or stick to third-party space objects76. Nanosats, picosats, and chip-

sats have already been deployed, however, similar small objects haven’t yet deployed 

beyond GEO. Projects utilizing laser sail propelled chipsats have been proposed77, yet 

legal issues will arise with the  deployment of smartdust-like systems on the Moon.  

Smartdust and programmable matter can be useful in sensor-based monitoring 

and exploration, and as elements of larger industrial structures78, yet the problem of 

deploying very small space objects involves carrying them in a proper registry. Ke-

eping track of tiny space objects will be extremely hard, though the deploying state 

will remain liable and responsible for any damage or interference they might cause. 

Thus even though one could view national space law as limited to the space objects 

themselves, in practice, the space object can be seen as a metaphorical eyestalk79 

or an appendage, through which a nation-state performs acts of space activity.  This 

analogy only highlights the matter of geocentrism of international space law and 

astropolitics80, yet it further allows us to see how space objects affect outer space and 

celestial bodies during their activities. It is not unreasonable to view decommissio-

ned, damaged, or otherwise inoperational space objects as discarded elements of 

the “national organism”81 extended into outer space. This space object derived “detri-

tus”82 however cannot be perceived as the equivalent of “marine snow”83, as much as 

humans would love to extend nautical analogies into outer space. 
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Going back to our “appendage” analogy, space objects interact with outer space and 

celestial bodies according to national space law, upon authorization, within the fra-

mework of international space law. This includes objects involved in space resource 

activities84. In the absence of an internationally acceptable framework85 for space 

resource operations, several state parties to the OST have decided to allow authori-

zation of space resource activities within their national space law86. Space resources 

are also present in intergovernmental project-specific contractual frameworks, such 

as the Artemis Accords87 and the ILRS project88. There are numerous independent 

propositions for regulating space resource activities on the international level, none 

of which have yet gained international recognition89.

It should be noted that not many approaches to regulating space resource acti-

vities recognize the value of in-space manufacturing90 as a strategic and operatio-

nal advantage91 for improvising and adapting to unforeseen situations92.  This comes 

mostly from the misunderstanding of concepts like space mining93 or ISRU94, as well 

as the history of the space resources debate within the field of international spa-

ce law95.  There are ongoing debates that revolve around the idea of the scope of 

the non-appropriation principle present in Article II of the OST, as well as the idea of 

“ownership” regarding resources (both extracted and within their natural deposits)96. 

Introducing ISM into the debate provides clarification over the idea of the use of 

space resources and branches out into a different question: What is the legal status 

of the products of ISM, which were manufactured using extracted space resources? 

Currently, there is no definite answer, though several proposals have been produced 

in national space law97, as well as in academia98. As ISM activities can be divided into 

intravehicular and extravehicular operations99 It would be reasonable to accept that 

products of ISM created from or with the use of space resources will have to fall into 

two categories. One is space products, which are basic tools, articles of manufac-

turing, replacement, and spare parts, that are insufficient in their purpose and use 

in order to be registered as space objects. The second are “space object”-grade pro-

ducts, which have been manufactured with the use of space resources, and assem-

bled on-site, and designed specifically for use in outer space in a manner similar to 

conventional space objects. These would include launch vehicles, OTVs, rovers, surfa-

ce and subsurface structures such as crewed stations, and solar panels. While the lat-

ter might pose a challenge to space law, as they are not “objects launched into outer 

space”100 per se, both can serve as the basis for discussing the scope of authorization 

and the operator’s business autonomy. However, we need to recall that some space 

products might be manufactured around and assembled with core space objects 

launched from Earth, thus becoming components of space objects in the process101.

It is reasonable to assume, that by authorizing space resource activities, the US go-

vernment grants the designated person the right to “to possess, own, transport, use, 

and sell the asteroid resource or space resource obtained in accordance with appli-

cable law, including the international obligations of the United States.”102. However, 

the scope and limitation of the right to use and sell those resources are still unclear. 

The use might include processing the resource into fuel, coolant, or potable water, 

while it may also include acts of manufacturing tools, articles of manufacturing, and 

3. SPACE RESOURCES AND IN-SPACE MANUFACTURING
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structural elements of larger objects and vehicles. It is uncertain how much liberty 

would be granted to the authorized entity with an established space resources ope-

ration with regard to post-extraction activities. Business entities engaged in space 

resource activities would be interested in a more laissez-faire approach, where au-

thorization and supervision regard only the basic safety and standard compliance 

of the extractive and manufacturing activity. That way they could manufacture pro-

ducts or sell products on the national or international markets without obstructi-

ve state intervention. However, an Earth-based micromanagement akin to strategy 

games of the 4X genre103 is also possible. With regards to authorizing states protec-

ting their interest and national security, it is possible that initially every product ma-

nufactured for the commercial market and not for the purpose of a state-directed 

space program will require authorization and constant supervision from the proper 

government body. This partially resembles the commercial space remote sensing 

dilemma, where restricting the use of satellite data limits business applications104, 

while also maintaining government leverage over products of a dual-use technology 

and mitigating risks to national security105.  One may imagine government entities 

establishing a tier system or categories for space resources and manufacturing with 

their use, where certain objects such as basic supplies or articles of manufacture 

including standardized spare parts are subject to minimum restrictions, where “stra-

tegic space resources”106, such as platinum group metals, rare earth elements or iso-

topes (including Helium-3) require a specific license and more rigorous supervision. 

Manufacturing operations utilizing strategic space resources, or the manufacturing 

of robotic rovers and structures on the surface of celestial bodies will be more restric-

tive, especially with regard to the ability to sell manufactured vehicles, systems, and 

structures to foreign entities107. 

4.  AUTONOMOUS SYSTEMS AND SPACE MANUFACTURING.

Autonomous systems for space mining and manufacturing have been a topic of stu-

dy for several decades10. Lunar factories109, multi-robot swarms110, and even possible 

self-replicating factory systems111 utilizing lunar or asteroid resources have been di-

scussed either generally or in great detail. The ability to maximize space resource 

utilization to the point of self-replication112 can be seen as a pinnacle of the mining 

and manufacturing system113. While the difference between a closed mechanical 

ecosystem114 and the proper industrial capacity of lunar factories115 will remain techni-

cal and philosophical questions, space law has to wrestle with different ones. 

We need to recall that all initial elements of the space factory complex will be laun-

ched from Earth and therefore be recognized internationally as space objects under 

Article VIII of the OST. This “seed factory”116 will be designed to extract local resources 

in order to produce designated pieces of equipment and build desired structures. 

Thus, a group of space objects that collectively create the initial factory will in time 

create new objects, as well as spare parts for existing ones, with further copies of the 

original objects down the line. Thus we can say that a space factory is “a space ob-

ject or a group of space objects, possessing a manufacturing capacity or which are 

used for in-space manufacturing activities”. This would include dedicated industrial 

space objects, such as processing facilities, stationary and mobile processing and 

manufacturing machines, haulers, transporters, cargo and resource depots, as well 

as crewed and uncrewed space objects of general purpose, fitted with manufac-
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turing equipment (robotic arms117, 3D printers118) and used for the purpose of in-space 

manufacturing. In our case, these would all comprise either remote teleoperators or 

autonomous systems. 

Adding autonomous systems to space operations further complicates the situation 

regarding the provisions of international space law119. While we can simply disregard 

any possible prohibition of placing Artificial Intelligence in outer space under the 

notion that it may be classified as a weapon of mass destruction120, the fact that in-

ternational space law treaties are ill-fitted for regulating autonomous space robots 

remains. The provisions of the Outer Space Treaty form the fundamental framework 

for human activities beyond Earth. Yet, they were not created with complex autono-

mous robotic systems in mind121. With debates in the field of space law still revolving 

around the basic topics such as demarcation between air space and outer space122, 

and the more recent topics like non-appropriation regarding space resource acti-

vities123 and the pressing issue of mounting number of space debris124, one can see 

AI as another element to push international space law into its own Kessler collision 

cascade125.  

First and foremost, is the Article VI of the OST. States wishing to employ autonomous 

systems in their space activities will be required to set up provisions for authorization 

and means of constant supervision and bear responsibility for the acts of the autho-

rized entities. The problem here includes the question of the nature of the system 

– Where is it based? Is it a lunar central computer remotely operating all of its robot 

swarms?126 Or is the system located on Earth, with the on-site central system being 

only a peripheral node, carrying out tasks directed from the Earth-based system127? 

If it’s the latter, the issue arises with some systems being spread out over multiple 

jurisdictions128. With that regard, we need to recall that formally, under Article VIII of 

the OST, the state of registry retains the jurisdiction, as well as control over its space 

object. However, how much control does the state have over an autonomous system 

in outer space129?

Here we unfortunately run into a problem of space practice that has shaped interna-

tional space law. Currently, all space activities are controlled from the surface of the 

Earth by designated mission control centers (MCC)130 and other bases of operation131. 

This directly ties them to both articles VI and VIII of the OST, where direct control 

of a space object remains in the proverbial hands of state-based or private entities, 

supervised by appropriate governing and supervisory bodies of the state132. Utilizing 

an Earth-based AI system would necessitate that the authorizing state put forward 

sufficient requirements for the entity applying for license133, ensuring compliance 

with the national autonomous system or AI laws134, as well as means of maintaining 

supervision over the space system it’s operating135. These intersections of national AI 

laws and space regulations have not yet been established, although low-level auto-

nomy has been employed in orbital satellites and to a certain extent, rovers136. The 

“in-space computer core” concept137, where the in-situ central computer provides 

connected machines with instructions and is able to act with a high level of autono-

my presents a greater challenge. Though it is reasonable to assume that future space 

operations carried out by robots in deep space will benefit from a local controlling 

computer due to latency issues experienced by direct command from Earth138, the 
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state that granted the license and authorized the operation will be held responsible 

for actions of the robotic nest and its drones139. 

This might be seen even as a paradox, concerning that space objects registered by 

a state are, as discussed earlier, acting as appendages and quasi-territorial jurisdic-

tions of the state of registration. Thus a scenario where the concerned state has limi-

ted or no effective control over its robotic space objects begs question of the basic 

mechanisms of authorization (supervision and responsibility) as well as control in 

the understanding of space law140. The problem mirrors two problems discussed in 

works of space law. First is the problem of space debris141, where Earth-based control 

over a launched object is lost due to malfunction, loss of propellant142, or impossible 

due to the nature of the object itself. The second is the speculated idea of the legal 

autonomy of remote human settlements on Mars. 

The example of space debris however relates not to the responsibility of states for 

the activities of its nationals, and government entities, including remote teleopera-

tors and autonomous space objects, but to liability for damage and collisions caused 

by space objects143. Launching states, which can be different states from the cur-

rent state of registry of space objects, are liable for damage caused by their space 

objects, whether on Earth or in outer space144. This topic has been discussed in re-

lation to applications of Artificial  Intelligence in space activities, for collisions with 

space objects and their fragments might be the result of decisions and actions of AI 

systems145. However, it needs to be stated that while AI systems can be embedded 

within the systems of the autonomous space object, the registration convention and 

space law in general treat only tangible objects as space objects146. In relation to our 

space mining and manufacturing operations, it might be difficult to differentiate 

responsibility from liability in some areas. Creating harmful interference does not 

qualify as causing damage per se under the liability convention147. The most obvious 

example would be rovers driving into third parties’ space objects directly148. However, 

it is possible that acts of harmful interference that cause indirect physical damage 

(such as blowing clouds of  abrasive regolith) could be considered physical dama-

ge under the liability convention. Furthermore, rovers physically acting upon third 

parties’ space objects, in the form of moving, removing, or disassembling or other-

wise appropriating their components could be the basis of both a liability claim and 

appealing for state responsibility for its space objects and authorized activities149.  It 

should be noted, however, that these “robot vandals” need to be registered as space 

objects if they have been manufactured on-site. Yet, even if they are registered as a 

space object equivalent (space-made product, space-manufactured object)150, they 

might be missing a launching state assigned to them151. In terms of liability, it may be 

reasonable that the state should be wary, that even if its locally produced robots are 

not considered space objects, the seed factory most likely will be. Thus by extension, 

the state might be viewed as responsible for any violations of international law per-

formed by the products of its authorized and registered space factory.  

The second example of discussed autonomy for Mars settlements includes several 

factors.

The first factor is that Martian space stations would be made up of several coope-

rating modules that are not physically connected to one another. They are only a 
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cluster of quasi-territorial space objects. A similar case can be seen in satellite con-

stellations, where states exercise power over the moving objects in outer space, and 

not the areas between said objects.  The case for Martian autonomy or the broader 

discussion over applying space law to remote settlements brings us to the problem 

of introducing autonomy into responsibility under Article VI. Initial objects that form 

the core of Martian settlements are landed and constructed space objects and, thus 

are linked to the terrestrial state of registry. The personnel also falls under the juris-

diction of the proper state on the basis of their nationality, authorization, or the space 

object they inhabit or use while on a celestial body. A number of concepts have been 

presented, ranging from expanding national regulations152, proposing an internatio-

nal153 or multinational governance154, and creating Mars-specific regulations155. Other 

works highlight the problem arising from the efforts of Martian settlers in gaining 

legal autonomy156 and problems stemming from the astropolitical practice in cre-

ating and adapting new acts of space law157, or Mars-oriented international organiza-

tions158. Space environmental concerns might be raised by recognizing the rights of 

Mars itself159. However, the main issue arises when settlers start developing their own 

policies regarding settlement, technology, or the use of the Martian environment160. 

Outside of the concept of ecoforming, such as ecopoesis and terraforming, Martian 

settlers will require limited operational and decisional autonomy in regards161. There 

have been concepts of martian constitution presented in space law  as well as in 

science fiction162. However, here lies the problem of space law: at which point does a 

state lose its responsibility for operating space objects (and their personnel)?

From the Martian settlement perspective, it seems that the idea of autonomy, so-

vereignty, and independence is based on the historical experience of populations, 

especially colonies. While one might doubt that similar attempts towards liberation 

and political emancipation carried out by robots would be viewed with similar un-

derstanding164, in the case of humans the alternative is political and social rigor that 

might run contrary to the idea of human rights165. Therefore there is a level of ac-

ceptance for states to be relieved of responsibility for the actions taken by human 

settlers in deep space, despite their founding infrastructure being comprised of sta-

te-linked space objects and thus legal obligations.  

The analogy of Martian independence concepts creates additional pitfalls for discus-

sing autonomous industrial systems in outer space. On the same note presents the 

paradox of states waiving their jurisdiction, control, and responsibility over distant 

space objects, if they are acting “autonomously” via its inhabitants. This shows that 

under certain, though hypothetical circumstances, a state can renounce its inter-

national responsibility for activities it has previously authorized and withdraw any 

supervision. By that, the state would also surrender the jurisdiction and control of 

given space objects to a newly formed politically autonomous party. This runs cont-

rary to the contemporary approach towards space debris, as they cannot be scuttled 

or legally abandoned166 (declaring them res nullius), as well as the international ob-

ligations of the state regarding Article VI.  Within the contemporary understanding, 

the state will retain jurisdiction and control, as well as bear responsibility for actions, 

which would include the unauthorized proliferation of space objects or space ma-

nufactured objects. It will, also under the contemporary framework, be held liable for 

damage caused by space debris, including inappropriately operating space objects, 
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whether the issue is caused by the AI control system or faults in the manufacturing 

and assembly process. 

Thus the concept of In-space Computer governance over the operations of autono-

mous systems will require the development of novel instruments of space law, or 

at least space law adjacent. It is doubtful this will take the form of an international 

treaty, or instruments of soft law for national regulators to implement in the national 

framework. However, following the frameworks of the Artemis Accords and the ISS 

IGA, it is possible that the “contractual” route for space regulations regarding specific 

operations would be a better solution. Taking into account how diverse national and 

regional regulations on AI and space law tend to be, a multinational agreement with 

an open access system would seem proper. However, as with propositions on cre-

ating a “space jurisdiction”167 under the governance of an international entity, astro-

political tensions might turn any such contractual framework into another moon 

treaty168. For now, it is up to the national and regional governments to regulate auto-

nomous systems in outer space – and adding the whole packet upcoming of lunar 

industrialization can lead to different autonomous industrial space systems existing 

on the same celestial body, but in different parallel worlds of the space law multiver-

se. Thus making it a labyrinth of legal frameworks, through which any party seeking 

legal remedies needs to traverse, which would involve multiple planes of internatio-

nal private law. 

5. CONCLUSIONS

What can break a space lawyer’s heart is that the development of space technolo-

gy goes down a path that international treaties cannot follow. At least under their 

contemporary framework. The body of international space law will have to undergo 

intense upgrading,  with new instruments and an updated understanding of con-

temporary problems and issues looming on the horizon. The inclusion of autonomo-

us robotic systems with ever-growing manufacturing capacities will gradually hollow 

out the contemporary framework, or the absence of new issue-specific regulations 

is going to eat away the technological potential, by nerfing possible advancements. 

While this is not uncommon in the field of space development theory, where evo-

lutionary factors and “great filters” are considered as selection mechanisms for both 

life, artifacts, and civilizations in outer space (or the galaxy), unreasonable prohi-

bitions will only hinder robotic space utilization and expansion of the human sphere 

beyond Earth. However, lax developments will create a hostile wasteland for new 

space actors, with irresponsible entities running rampant and unrestrained say by 

their resources and the environment. Therefore states and private stakeholders need 

to take into consideration the mid and long-term effects of regulations - possibly 

creating novel approaches in the process.
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ENG: �Robotic space exploration allows humans to perform space activities remotely 

in the hazardous environment of outer space and celestial bodies. And where 

robots go, the law should follow. However, taking into account that the ma-

jority of treaties that make up the framework of international space law are 

at least 50 years old, numerous problems tend to unfold. This includes issues 

relating to the authorization and international responsibility for robotic space 

objects, especially ones granted higher levels of autonomy. Regarding the 

near future experiments and activities focused on mining space resources 

and manufacturing products beyond Earth, there are serious concerns raised, 

that are not easily addressed by the contemporary framework of space law. 

This article aims to describe problems stemming from robotic space manu-

facturing and employing autonomous systems for that task through the lens 

of space law.

PL:    �Robotyczna eksploracja przestrzeni kosmicznej pozwala ludziom na zdalną 

działalność w przestrzeni kosmicznej w niebezpiecznym środowisku przestrze-

ni kosmicznej i ciał niebieskich. A tam, gdzie podążają roboty, powinno podą-

żać prawo. Biorąc jednak pod uwagę, że większość traktatów tworzących sys-

tem międzynarodowego prawa kosmicznego ma co najmniej 50 lat, pojawiają 

się liczne problemy. Obejmuje to kwestie związane z udzielaniem zezwoleń na 

działalność oraz międzynarodową odpowiedzialnością za działania robotycz-

nych obiektów kosmicznych, zwłaszcza te, którym przyznano wyższy poziom 

autonomii. W  odniesieniu do przyszłych eksperymentów i  działań skoncen-

trowanych na wydobywaniu zasobów kosmicznych i wytwarzaniu produktów 

poza Ziemią, pojawiają się poważne obawy, które nie są łatwe do rozwiązania 

przez współczesne regulacje prawa kosmicznego. Niniejszy artykuł ma na celu 

opisanie problemów wynikających ze zrobotyzowanej produkcji kosmicznej 

i wykorzystywania autonomicznych systemów do tego zadania przez pryzmat 

prawa kosmicznego.

ABSTRACT:

ENG: �Space Manufacturing, Space Law, Space Robots, Robot Autonomy, Artificial 

Intelligence, Space Law

PL:    �Produkcja kosmiczna, prawo kosmiczne, roboty kosmiczne, autonomia robo-

tów, sztuczna inteligencja, prawo kosmiczne
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